Question

The sum of first 20 terms of the sequence 0.7, 0.77, 0.777, . . . . . , is

A. $$\frac{7}{{81}}\left( {179 - {{10}^{ - 20}}} \right)$$
B. $$\frac{7}{{9}}\left( {99 - {{10}^{ - 20}}} \right)$$
C. $$\frac{7}{{81}}\left( {179 + {{10}^{ - 20}}} \right)$$  
D. $$\frac{7}{{9}}\left( {99 + {{10}^{ - 20}}} \right)$$
Answer :   $$\frac{7}{{81}}\left( {179 + {{10}^{ - 20}}} \right)$$
Solution :
Given sequence can be written as
$$\eqalign{ & \frac{7}{{10}} + \frac{{77}}{{100}} + \frac{{777}}{{{{10}^3}}} + ..... + {\text{ up to 20 terms}} \cr & = {\text{7}}\left[ {\frac{1}{{10}} + \frac{{11}}{{100}} + \frac{{111}}{{{{10}^3}}} + ..... + {\text{up to 20 terms}}} \right] \cr & {\text{Multiply and divide by 9}} \cr & = \frac{7}{9}\left[ {\frac{9}{{10}} + \frac{{99}}{{100}} + \frac{{999}}{{{{10}^3}}} + ..... + {\text{up to 20 terms}}} \right] \cr & = \frac{7}{9}\left[ {\left( {1 - \frac{1}{{10}}} \right) + \left( {1 - \frac{1}{{{{10}^2}}}} \right) + \left( {1 - \frac{1}{{{{10}^3}}}} \right) + ..... + {\text{up to 20 terms}}} \right] \cr & = \frac{7}{9}\left[ {20 - \frac{{\frac{1}{{10}}\left( {1 - {{\left( {\frac{1}{{10}}} \right)}^{20}}} \right)}}{{1 - \frac{1}{{10}}}}} \right] \cr & = \frac{7}{9}\left[ {\frac{{179}}{9} + \frac{1}{9}{{\left( {\frac{1}{{10}}} \right)}^{20}}} \right] \cr & = \frac{7}{{81}}\left[ {179 + {{\left( {10} \right)}^{ - 20}}} \right] \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section