Question

The sum of $$\frac{3}{{1 \cdot 2}} \cdot \frac{1}{2} + \frac{4}{{2 \cdot 3}} \cdot {\left( {\frac{1}{2}} \right)^2} + \frac{5}{{3 \cdot 4}} \cdot {\left( {\frac{1}{2}} \right)^3} + ......\,{\text{to }}n$$           terms is equal to

A. $$1 - \frac{1}{{\left( {n + 1} \right){2^n}}}$$  
B. $$1 - \frac{1}{{n \cdot {2^{n - 1}}}}$$
C. $$1 + \frac{1}{{\left( {n + 1} \right){2^n}}}$$
D. None of these
Answer :   $$1 - \frac{1}{{\left( {n + 1} \right){2^n}}}$$
Solution :
$${t_n} = \frac{{n + 2}}{{n\left( {n + 1} \right)}} \cdot {\left( {\frac{1}{2}} \right)^n} = \frac{{2\left( {n + 1} \right) - n}}{{n\left( {n + 1} \right)}} \cdot {\left( {\frac{1}{2}} \right)^n} = \frac{1}{n} \cdot {\left( {\frac{1}{2}} \right)^{n - 1}} - \frac{1}{{n + 1}} \cdot {\left( {\frac{1}{2}} \right)^n}.$$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section