Question

The sum $$\frac{1}{2}{\,^{10}}{C_0} - {\,^{10}}{C_1} + 2 \cdot {\,^{10}}{C_2} - {2^2} \cdot {\,^{10}}{C_3} + ..... + {2^9} \cdot {\,^{10}}{C_{10}}$$           is equal to

A. $$\frac{1}{2}$$  
B. $$0$$
C. $$\frac{1}{2} \cdot {3^{10}}$$
D. None of these
Answer :   $$\frac{1}{2}$$
Solution :
Sum $$ = \frac{1}{2}\,\left\{ {^{10}{C_0} - {\,^{10}}{C_1} \cdot 2 + {\,^{10}}{C_2} \cdot {2^2} - {\,^{10}}{C_3} \cdot {2^3} + ..... + {\,^{10}}{C_{10}} \cdot {2^{10}}} \right\}$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{1}{2}{\left( {1 - 2} \right)^{10}} = \frac{1}{2}.$$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section