Question

The sum $$1 + \frac{{1 + a}}{{2!}} + \frac{{1 + a + {a^2}}}{{3!}} + .....\,\infty $$       is equal to

A. $${e^a}$$
B. $$\frac{{{e^a} - e}}{{a - 1}}$$  
C. $$\left( {a - 1} \right){e^a}$$
D. $$\left( {a + 1} \right){e^a}$$
Answer :   $$\frac{{{e^a} - e}}{{a - 1}}$$
Solution :
The given series is
$$\eqalign{ & 1 + \frac{{1 + a}}{{2!}} + \frac{{1 + a + {a^2}}}{{3!}} + \frac{{1 + a + {a^2} + {a^3}}}{{4!}} + .....\, \cr & {\text{Here, }}{T_n} = \frac{{1 + a + {a^2} + {a^3} + .....\,\,{\text{to }}n{\text{ terms}}}}{{n!}} \cr & = \frac{{1\left( {1 - {a^n}} \right)}}{{\left( {1 - a} \right)\left( {n!} \right)}} = \frac{1}{{1 - a}}\left( {\frac{{1 - {a^n}}}{{n!}}} \right) \cr & \therefore {T_1} + {T_2} + {T_3} + .....{\text{ to }}\infty \cr & = \frac{1}{{1 - a}}\left[ {\frac{{1 - a}}{{1!}} + \frac{{1 - {a^2}}}{{2!}} + \frac{{1 - {a^3}}}{{3!}} + .....{\text{ to }}\infty } \right] \cr & = \frac{1}{{1 - a}}\left[ {\left( {\frac{1}{{1!}} + \frac{1}{{2!}} + \frac{1}{{3!}} + .....{\text{ to }}\infty } \right) - \left( {\frac{a}{{1!}} + \frac{{{a^2}}}{{2!}} + \frac{{{a^3}}}{{3!}} + .....{\text{ to }}\infty } \right)} \right] \cr & = \frac{1}{{1 - a}}\left[ {\left( {e - 1} \right) - \left( {{e^a} - 1} \right)} \right] = \frac{{e - {e^a}}}{{1 - a}} = \frac{{{e^a} - e}}{{a - 1}} \cr} $$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section