Question

The solution to of the differential equation $$\left( {x + 1} \right)\frac{{dy}}{{dx}} - y = {e^{3x}}{\left( {x + 1} \right)^2}{\text{ is :}}$$

A. $$y = \left( {x + 1} \right){e^{3x}} + c$$
B. $$3y = \left( {x + 1} \right) + {e^{3x}} + c$$
C. $$\frac{{3y}}{{x + 1}} = {e^{3x}} + c$$  
D. $$y{e^{ - 3x}} = 3\left( {x + 1} \right) + c$$
Answer :   $$\frac{{3y}}{{x + 1}} = {e^{3x}} + c$$
Solution :
The given equation is
$$\eqalign{ & \frac{{dy}}{{dx}} - \frac{y}{{x + 1}} = {e^{3x}}\left( {x + 1} \right) \cr & {\text{I}}{\text{.F}}{\text{.}} = {e^{\int { - \frac{1}{{x + 1}}dx} }} = {e^{ - \log \left( {x + 1} \right)}} = \frac{1}{{x + 1}} \cr & {\text{The solution is }} \cr & y\left( {\frac{1}{{x + 1}}} \right) = \int {{e^{3x}}\left( {x + 1} \right).\frac{1}{{x + 1}}dx + a} \cr & \Rightarrow \frac{y}{{x + 1}} = \int {{e^{3x}}dx + a} \cr & \Rightarrow \frac{y}{{x + 1}} = \frac{{{e^{3x}}}}{3} + a \cr & \Rightarrow \frac{{3y}}{{x + 1}} = {e^{3x}} + c,\,c = 3a \cr} $$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section