Question

The solution set of $$\frac{{{x^2} - 3x + 4}}{{x + 1}} > 1,x \in R,$$     is

A. $$\left( {3, + \infty } \right)$$
B. $$\left( { - 1,1} \right) \cup \left( {3, + \infty } \right)$$  
C. $$\left[ { - 1,1} \right] \cup \left[ {3, + \infty } \right)$$
D. None of these
Answer :   $$\left( { - 1,1} \right) \cup \left( {3, + \infty } \right)$$
Solution :
$$\eqalign{ & \frac{{{x^2} - 3x + 4}}{{x + 1}} > 1 \cr & \Rightarrow \frac{{{x^2} - 3x + 4}}{{x + 1}} - 1 > 0 \cr & \Rightarrow \frac{{{x^2} - 4x + 3}}{{x + 1}} > 0 \cr & \Rightarrow \frac{{\left( {x + 1} \right)\left( {x - 1} \right)\left( {x - 3} \right)}}{{{{\left( {x + 1} \right)}^2}}} > 0 \cr & \Rightarrow \left( {x + 1} \right)\left( {x - 1} \right)\left( {x - 3} \right) > 0\,\,{\text{and }}x \ne - 1 \cr} $$
Using method of interval, we get,
$$x \in \left( { - 1,1} \right) \cup \left( {3,\infty } \right)$$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section