Question

The solution set of $$\left| {\frac{{x + 1}}{x}} \right| + \left| {x + 1} \right| = \frac{{{{\left( {x + 1} \right)}^2}}}{{\left| x \right|}}$$      is

A. $$\left\{ {x\left| {x \geqslant 0} \right.} \right\}$$
B. $$\left\{ {x\left| {x > 0} \right.} \right\} \cup \left\{ { - 1} \right\}$$  
C. $$\left\{ { - 1,1} \right\}$$
D. $$\left\{ {x\left| {x \geqslant 1} \right.\,\,{\text{or, }}x \leqslant - 1} \right\}$$
Answer :   $$\left\{ {x\left| {x > 0} \right.} \right\} \cup \left\{ { - 1} \right\}$$
Solution :
$$\eqalign{ & \frac{{\left| {x + 1} \right|}}{{\left| x \right|}} + \left| {x + 1} \right| = \frac{{\left| {x + 1} \right|^2}}{{\left| x \right|}} \cr & \Rightarrow \,\,\left| {x + 1} \right|\left\{ {\frac{1}{{\left| x \right|}} + 1 - \frac{{\left| {x + 1} \right|}}{{\left| x \right|}}} \right\} = 0 \cr & \therefore \,\,\left| {x + 1} \right| = 0\,\,\,{\text{or, }}1 + \left| x \right| - \left| {x + 1} \right| = 0. \cr & \left| {x + 1} \right| = 0 \cr & \Rightarrow \,\,x = - 1. \cr & {\text{If }}x < - 1,1 + \left| x \right| - \left| {x + 1} \right| = 0 \cr & \Rightarrow \,\,1 - x + x + 1 = 0 \cr & \Rightarrow \,\,2 = 0\left( {{\text{absurd}}} \right). \cr & {\text{If }} - 1 \leqslant x < 0,1 + \left| x \right| - \left| {x + 1} \right| = 0 \cr & \Rightarrow \,\,1 - x - \left( {x + 1} \right) = 0 \cr & \Rightarrow \,\,x = 0\left( {{\text{not possible}}} \right). \cr & {\text{If }}x \geqslant 0,1 + x - \left( {x + 1} \right) = 0 \cr & \Rightarrow \,\,0 = 0 \cr} $$
⇒ $$x$$ can have any value in the interval.
$$\therefore \,\,x = - 1,x > 0\left( {\because \,\,x \ne 0} \right).$$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section