Question

The solution set of the inequation $${\log _{\frac{1}{3}}}\left( {{x^2} + x + 1} \right) + 1 > 0$$      is

A. $$\left( { - \infty , - 2} \right) \cup \left( {1, + \infty } \right)$$
B. $$[- 1, 2]$$
C. $$\left( { - 2 , 1 } \right)$$  
D. $$\left( { - \infty , + \infty } \right)$$
Answer :   $$\left( { - 2 , 1 } \right)$$
Solution :
$$\eqalign{ & {\log _{\frac{1}{3}}}\left( {{x^2} + x + 1} \right) > - 1 = {\log _{\frac{1}{3}}}{\left( {\frac{1}{3}} \right)^3} \cr & \Rightarrow \,\,{x^2} + x + 1 < {\left( {\frac{1}{3}} \right)^{ - 1}} \cr & \Rightarrow \,\,{x^2} + x - 2 < 0. \cr} $$
Use sign scheme.

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section