Question
The solution of the equation $$\frac{{{d^2}y}}{{d{x^2}}} = {e^{ - 2x}}$$
A.
$$\frac{{{e^{ - 2x}}}}{4}$$
B.
$$\frac{{{e^{ - 2x}}}}{4} + cx + d$$
C.
$$\frac{1}{4}{e^{ - 2x}} + c{x^2} + d$$
D.
$$\frac{1}{4}{e^{ - 4x}} + cx + d$$
Answer :
$$\frac{{{e^{ - 2x}}}}{4} + cx + d$$
Solution :
$$\frac{{{d^2}y}}{{d{x^2}}} = {e^{ - 2x}}\,\,;\,\,\frac{{dy}}{{dx}} = \frac{{{e^{ - 2x}}}}{{ - 2}} + c\,\,;\,\,y = \frac{{{e^{ - 2x}}}}{4} + cx + d$$