Question

The solution of the differential equation $$x\,\sin \,x\frac{{dy}}{{dx}} + \left( {x\,\cos \,x + \sin \,x} \right)y = \sin \,x.$$
When $$y\left( 0 \right) = 0$$   is :

A. $$xy\,\sin \,x = 1 - \cos \,x$$  
B. $$xy\,\sin \,x + \cos \,x = 0$$
C. $$x\,\sin \,x + y\,\cos \,x = 0$$
D. $$x\,\sin \,x + y\,\cos \,x = 1$$
Answer :   $$xy\,\sin \,x = 1 - \cos \,x$$
Solution :
The equation is $$\frac{{dy}}{{dx}} + \left( {\frac{{x\,\cos \,x + \sin \,x}}{{x\,\sin \,x}}} \right)y = \frac{1}{x}$$
Integrating factor
$${\text{I}}{\text{.F}}{\text{.}} = {e^{\int {\frac{{x\,\cos \,x + \sin \,x}}{{x\,\sin \,x}}} dx}} = {e^{\log \left( {x\,\sin \,x} \right)}} = x\,\sin \,x$$
$$\therefore $$  The solution is
$$\eqalign{ & y\left( {x\,\sin \,x} \right) = \int {\frac{1}{x}\left( {x\,\sin \,x} \right)dx + c} \cr & xy\,\sin \,x = - \cos \,x + c{\text{ when}} \cr & x = 0,\,y = 0 \Rightarrow c = \cos \,0 = 1 \cr} $$
$$\therefore $$  The particular solution is $$xy\,\sin \,x = 1 - \cos \,x$$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section