Question

The solution of the differential equation $$\frac{{dy}}{{dx}} = \frac{{1 - 3y - 3x}}{{1 + x + y}}$$     is :

A. $$x + y - \ell n\left| {x + y} \right| = c$$
B. $$3x + y + 2\ell n\left| {1 - x - y} \right| = c$$  
C. $$x + 3y - 2\ell n\left| {1 - x - y} \right| = c$$
D. none of these
Answer :   $$3x + y + 2\ell n\left| {1 - x - y} \right| = c$$
Solution :
This is the form in which $$\frac{{{a_1}}}{{{a_2}}} = \frac{{{b_1}}}{{{b_2}}}$$
The given equation can be rewritten as $$\frac{{dy}}{{dx}} = \frac{{1 - 3\left( {x + y} \right)}}{{1 + \left( {x + y} \right)}} = f\left( {x + y} \right)$$
Substitute $$x + y = z \Rightarrow 1 + \frac{{dy}}{{dx}} = \frac{{dz}}{{dx}}$$
The equation then becomes
$$\eqalign{ & \frac{{dz}}{{dx}} - 1 = \frac{{1 - 3z}}{{1 + z}} \cr & \Rightarrow \frac{{dz}}{{dx}} = \frac{{1 - 3z + 1 + z}}{{1 + z}} \cr & \Rightarrow \frac{{dz}}{{dx}} = \frac{{2 - 2z}}{{1 + z}} \cr & \Rightarrow \frac{{1 + z}}{{2\left( {1 - z} \right)}}dz = dx \cr} $$
On integrating we get
$$\eqalign{ & \frac{1}{2}\int {\frac{{1 + z}}{{1 - z}}dz = } \int {dx + a} \cr & \Rightarrow \frac{1}{2}\int {\left[ {\frac{2}{{1 - z}} - 1} \right]dz = x + a} \cr & \Rightarrow - \ell n\left| {1 - z} \right| - \frac{1}{2}z = x + a \cr & \Rightarrow - \ell n\left| {1 - x - y} \right| - \frac{1}{2}\left( {x + y} \right) = x + a \cr & \Rightarrow - 2\ell n\left| {1 - x - y} \right| - 3x - y = 2a \cr & \Rightarrow 3x + y + 2\ell n\left| {1 - x - y} \right| = c{\text{ where }}c = - 2a \cr} $$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section