Question

The solution of $$\frac{{dy}}{{dx}} = \left| x \right|$$   is :
(Where $$c$$ is an arbitrary constant)

A. $$y = \frac{{x\left| x \right|}}{2} + c$$  
B. $$y = \frac{{\left| x \right|}}{2} + c$$
C. $$y = \frac{{{x^2}}}{2} + c$$
D. $$y = \frac{{{x^3}}}{2} + c$$
Answer :   $$y = \frac{{x\left| x \right|}}{2} + c$$
Solution :
$$\eqalign{ & \frac{{dy}}{{dx}} = \left| x \right| \cr & \frac{{dy}}{{dx}} = x{\text{ for }}x \geqslant 0\,;\frac{{dy}}{{dx}} = - x{\text{ for }}x < 0\,;\,\int {dy = } \int {x\,dx} \cr & y = \frac{{{x^2}}}{2} + {C_1}......\left( {{\text{i}}} \right) \cr & \int {dy = } - 1\,x\,dx \cr & y = - \frac{{{x^2}}}{2} + {C_1}......\left( {{\text{ii}}} \right) \cr & {\text{From }}\left( {\text{i}} \right){\text{ and }}\left( {{\text{ii}}} \right) \cr & y = \frac{{x\left| x \right|}}{2} + C \cr} $$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section