Question

The solution for $$x$$ of the equation is $$\int\limits_{\sqrt 2 }^x {\frac{{dt}}{{t\sqrt {{t^2} - 1} }} = \frac{\pi }{2}} $$     is-

A. $$\frac{{\sqrt 3 }}{2}$$
B. $$2\sqrt 2 $$
C. $$2$$
D. None  
Answer :   None
Solution :
$$\eqalign{ & \int_{\sqrt 2 }^x {\frac{{dt}}{{t\sqrt {{t^2} - 1} }} = \frac{\pi }{2}} \cr & \therefore \left[ {{{\sec }^{ - 1}}t} \right]_{\sqrt 2 }^x = \frac{\pi }{2}\,\,\,\,\,\,\left[ {\because \int {\frac{{dx}}{{x\sqrt {{x^2} - 1} }} = {{\sec }^{ - 1}}x} } \right] \cr & \Rightarrow {\sec ^{ - 1}}x - {\sec ^{ - 1}}\sqrt 2 = \frac{\pi }{2} \cr & \Rightarrow {\sec ^{ - 1}}x - \frac{\pi }{4} = \frac{\pi }{2} \cr & \Rightarrow {\sec ^{ - 1}}x = \frac{\pi }{2} + \frac{\pi }{4} \cr & \Rightarrow {\sec ^{ - 1}}x = \frac{{3\pi }}{4} \cr & \Rightarrow x = \sec \frac{{3\pi }}{4} \cr & \Rightarrow x = - \sqrt 2 \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section