Question

The smallest positive integral value of $$p$$ for which the equation $$\cos\left( {p\sin x} \right) = \sin \left( {p\cos x} \right)$$     in $$x$$ has a solution in $$\left[ {0,2\pi } \right]$$  is

A. 2  
B. 1
C. 3
D. None of these
Answer :   2
Solution :
$$\eqalign{ & {\text{Here,}}\,\,p\,\sin x = \frac{\pi }{2} \pm p\cos x\,\,\,{\text{or,}}\,\,\sin x \mp \,\cos x = \frac{\pi }{{2\,p}} \cr & {\text{or,}}\,\,{\text{sin}}\left( {x \mp \frac{\pi }{4}} \right) = \frac{\pi }{{2\sqrt {2\,p} }} \cr & \Rightarrow \,\left| {\frac{\pi }{{2\sqrt {2\,p} }}} \right| \leqslant 1 \cr} $$
∴ for positive $$p,p \geqslant \frac{\pi }{{2\sqrt 2 }}.\,{\text{But}}\,{\text{1}}\,{\text{ < }}\frac{\pi }{{2\sqrt 2 }} < 2.$$

Releted MCQ Question on
Trigonometry >> Trignometric Equations

Releted Question 1

The equation $$2\,{\cos ^2}\frac{x}{2}{\sin ^2}x = {x^2} + {x^{ - 2}};0 < x \leqslant \frac{\pi }{2}$$        has

A. no real solution
B. one real solution
C. more than one solution
D. none of these
Releted Question 2

The general solution of the trigonometric equation $$\sin x + \cos x = 1$$    is given by:

A. $$x = 2n\pi ;\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
B. $$x = 2n\pi + \frac{\pi }{2};\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
C. $$x = n\pi + {\left( { - 1} \right)^n}\,\,\frac{\pi }{4} - \frac{\pi }{4}$$
D. none of these
Releted Question 3

The general solution of $$\sin \,x - 3\,\sin \,2x\, + \sin \,3x\, = \cos x - 3\,\cos \,\,2x + \cos \,3x$$           is

A. $$n\pi + \frac{\pi }{8}$$
B. $$\frac{{n\pi }}{2} + \frac{\pi }{8}$$
C. $${\left( { - 1} \right)^n}\frac{{n\pi }}{2} + \frac{\pi }{8}$$
D. $$2n\pi + {\cos ^{ - 1}}\frac{3}{2}$$
Releted Question 4

Number of solutions of the equation $$\tan x + \sec x = 2\cos x$$     lying in the interval $$\left[ {0,2\pi } \right]$$  is:

A. 0
B. 1
C. 2
D. 3

Practice More Releted MCQ Question on
Trignometric Equations


Practice More MCQ Question on Maths Section