Question

The smallest positive integral value of $$n$$ for which $${\left( {1 + \sqrt {3}i } \right)^{\frac{n}{2}}}$$  is real is

A. 3
B. 6  
C. 12
D. 0
Answer :   6
Solution :
$$\eqalign{ & {\left( {1 + \sqrt {3}i } \right)^{\frac{n}{2}}} = {\left\{ {2\left( {\frac{1}{2} + \frac{{\sqrt 3 }}{2}i} \right)} \right\}^{\frac{n}{2}}} \cr & {\left( {1 + \sqrt {3}i } \right)^{\frac{n}{2}}} = {2^{\frac{n}{2}}}{\left( {\cos \frac{\pi }{3} + i\sin \frac{\pi }{3}} \right)^{\frac{n}{2}}} \cr & {\left( {1 + \sqrt {3}i } \right)^{\frac{n}{2}}} = {2^{\frac{n}{2}}}{\left( {\cos \frac{{n\pi }}{3} + i\sin \frac{{n\pi }}{3}} \right)^{\frac{1}{2}}}. \cr} $$
Clearly, the least positive integral value of $$n$$ for which $$\cos\frac{{n\pi }}{3} + i\sin \frac{{n\pi }}{3}$$    is positive real is $$6.$$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section