Question

The slope of the line touching both the parabolas $${y^2} = 4x$$  and $${x^2} = - 32y$$   is-

A. $$\frac{1}{8}$$
B. $$\frac{2}{3}$$
C. $$\frac{1}{2}$$  
D. $$\frac{3}{2}$$
Answer :   $$\frac{1}{2}$$
Solution :
Let tangent to $${y^2} = 4x$$   be $$y = mx + \frac{1}{m}$$
Since this is also tangent to $${x^2} = - 32y$$
$$\therefore {x^2} = - 32\left( {mx + \frac{1}{m}} \right)\,\,\, \Rightarrow {x^2} + 32mx + \frac{{32}}{m} = 0$$
Now, $$D=0$$
$$\eqalign{ & {\left( {32} \right)^2} - 4\left( {\frac{{32}}{m}} \right) = 0 \cr & \Rightarrow {m^3} = \frac{4}{{32}} \cr & \Rightarrow {m^3} = \frac{1}{8} \cr & \Rightarrow m = \frac{1}{2} \cr} $$

Releted MCQ Question on
Geometry >> Parabola

Releted Question 1

Consider a circle with its centre lying on the focus of the parabola $${y^2} = 2px$$   such that it touches the directrix of the parabola. Then a point of intersection of the circle and parabola is-

A. $$\left( {\frac{p}{2},\,p} \right){\text{ or }}\left( {\frac{p}{2},\, - p} \right)$$
B. $$\left( {\frac{p}{2},\, - \frac{p}{2}} \right)$$
C. $$\left( { - \frac{p}{2},\,p} \right)$$
D. $$\left( { - \frac{p}{2},\, - \frac{p}{2}} \right)$$
Releted Question 2

The curve described parametrically by $$x = {t^2} + t + 1,\,\,y = {t^2} - t + 1$$      represents-

A. a pair of straight lines
B. an ellipse
C. a parabola
D. a hyperbola
Releted Question 3

If $$x+y=k$$   is normal to $${y^2} = 12x,$$   then $$k$$ is-

A. $$3$$
B. $$9$$
C. $$ - 9$$
D. $$ - 3$$
Releted Question 4

If the line $$x-1=0$$   is the directrix of the parabola $${y^2} - kx + 8 = 0,$$    then one of the values of $$k$$ is-

A. $$\frac{1}{8}$$
B. $$8$$
C. $$4$$
D. $$\frac{1}{4}$$

Practice More Releted MCQ Question on
Parabola


Practice More MCQ Question on Maths Section