Question

The sides of a triangle are in A.P. and its area is $$\frac{3}{5} \times $$  (area of an equilateral triangle of the same perimeter). Then the ratio of the sides is

A. 1 : 2 : 3
B. 3 : 5 : 7  
C. 1 : 3 : 5
D. None of these
Answer :   3 : 5 : 7
Solution :
Here, $$2b = a + c$$   and $$\vartriangle = \frac{3}{5} \times \frac{{\sqrt 3 }}{4} \cdot {\left( {\frac{{a + b + c}}{3}} \right)^2}\,\,\,\therefore \,\,\vartriangle = \frac{{3\sqrt 3 }}{{20}} \cdot {b^2}.$$
$$\eqalign{ & \therefore \,\,\sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} = \frac{{3\sqrt 3 }}{{20}}{b^2} \cr & {\text{or, }}\sqrt {\frac{1}{{16}}\left( {a + b + c} \right)\left( {b + c - a} \right)\left( {c + a - b} \right)\left( {a + b - c} \right)} = \frac{{3\sqrt 3 }}{{20}}{b^2} \cr & {\text{or, }}\sqrt {3b \cdot \left( {b + c + c - 2b} \right)b\left( {2b - c + b - c} \right)} = \frac{{3\sqrt 3 }}{5}{b^2} \cr & {\text{or, }}\sqrt {\left( {2c - b} \right)\left( {3b - 2c} \right)} = \frac{3}{5}b\,\,\,{\text{or, }}8bc - 4{c^2} - 3{b^2} = \frac{9}{{25}}{b^2} \cr & {\text{or, }}\frac{{84}}{{25}}{b^2} - 8bc + 4{c^2} = 0\,\,\,\,\,{\text{or, }}\frac{b}{c} = \frac{{8 \pm \sqrt {64 - 16 \cdot \frac{{84}}{{25}}} }}{{2 \cdot \frac{{84}}{{25}}}} = \frac{5}{7},\frac{5}{3}. \cr & {\text{Also, }}2b = a + c \cr & \Rightarrow \,\,2\frac{b}{c} = \frac{a}{c} + 1 \cr & \Rightarrow \,\,\frac{a}{c} = \frac{{2b}}{c} - 1 = \frac{3}{7},\frac{7}{3}. \cr} $$

Releted MCQ Question on
Trigonometry >> Properties and Solutons of Triangle

Releted Question 1

If the bisector of the angle $$P$$ of a triangle $$PQR$$  meets $$QR$$  in $$S,$$ then

A. $$QS = SR$$
B. $$QS : SR = PR : PQ$$
C. $$QS : SR = PQ : PR$$
D. None of these
Releted Question 2

From the top of a light-house 60 metres high with its base at the sea-level, the angle of depression of a boat is 15°. The distance of the boat from the foot of the light house is

A. $$\left( {\frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)60\,{\text{metres}}$$
B. $$\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)60\,{\text{metres}}$$
C. $${\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)^2}{\text{metres}}$$
D. none of these
Releted Question 3

In a triangle $$ABC,$$  angle $$A$$ is greater than angle $$B.$$ If the measures of angles $$A$$ and $$B$$ satisfy the equation $$3\sin x - 4{\sin ^3}x - k = 0, 0 < k < 1,$$       then the measure of angle $$C$$ is

A. $$\frac{\pi }{3}$$
B. $$\frac{\pi }{2}$$
C. $$\frac{2\pi }{3}$$
D. $$\frac{5\pi }{6}$$
Releted Question 4

In a triangle $$ABC,$$  $$\angle B = \frac{\pi }{3}{\text{ and }}\angle C = \frac{\pi }{4}.$$     Let $$D$$ divide $$BC$$  internally in the ratio 1 : 3 then $$\frac{{\sin \angle BAD}}{{\sin \angle CAD}}$$   is equal to

A. $$\frac{1}{{\sqrt 6 }}$$
B. $${\frac{1}{3}}$$
C. $$\frac{1}{{\sqrt 3 }}$$
D. $$\sqrt {\frac{2}{3}} $$

Practice More Releted MCQ Question on
Properties and Solutons of Triangle


Practice More MCQ Question on Maths Section