Question

The set of values of $$\lambda \in R$$  such that $${\tan ^2}\theta + \sec \theta = \lambda $$    holds for some $$\theta $$ is

A. $$\left( { - \infty , 1} \right]$$
B. $$\left( { - \infty , - 1} \right]$$
C. $$\phi $$
D. $$\left[ { - 1, + \infty } \right)$$  
Answer :   $$\left[ { - 1, + \infty } \right)$$
Solution :
$$\eqalign{ & {\sec ^2}\theta + \sec \theta - \left( {\lambda + 1} \right) = 0 \cr & \therefore \,\,\sec \theta = \frac{{ - 1 \pm \sqrt {1 + 4\left( {\lambda + 1} \right)} }}{2} = \frac{{ - 1 \pm \sqrt {4\lambda + 5} }}{2}. \cr} $$
For real, $$\sec \theta ,4\lambda + 5 \geqslant 0,\,{\text{i}}{\text{.e}}{\text{., }}\lambda \geqslant - \frac{5}{4}.$$
Also, $$\sec\theta \geqslant 1\,\,{\text{or, sec}}\theta \leqslant - {\text{1}}{\text{.}}$$
$$\eqalign{ & \therefore \,\,\frac{{ - 1 \pm \sqrt {4\lambda + 5} }}{2} \geqslant 1\,\,{\text{or, }}\frac{{ - 1 \pm \sqrt {4\lambda + 5} }}{2} \leqslant - 1 \cr & \Rightarrow \,\, - 1 + \sqrt {4\lambda + 5} \geqslant 2\,\,\,{\text{or, }} - 1 - \sqrt {4\lambda + 5} \leqslant - 2 \cr & \Rightarrow \,\,4\lambda + 5 \geqslant 9\,\,{\text{or, }}4\lambda + 5 \geqslant 1 \cr & \Rightarrow \,\,\lambda \geqslant 1\,\,\,{\text{or, }}\lambda \geqslant - 1 \cr & \therefore \,\,\lambda \geqslant - \frac{5}{4}\,{\text{and }}\lambda \geqslant 1\,\,\,{\text{or, }}\lambda \geqslant - \frac{5}{4}\,{\text{and }}\lambda \geqslant - 1 \cr & \therefore \,\,\lambda \geqslant 1\,\,{\text{or, }}\lambda \geqslant - 1 \cr & \therefore \,\,\lambda \in \left[ { - 1, + \infty } \right). \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section