Question

The set of values of $$k \in R$$  such that the equation $$\cos 2\theta + \cos \theta + k = 0$$     admits of a solution for $$\theta $$ is

A. $$\left[ {0,\frac{9}{8}} \right]$$  
B. $$\left[ {0, + \infty } \right)$$
C. $$\left[ { - 2,0} \right]$$
D. None of these
Answer :   $$\left[ {0,\frac{9}{8}} \right]$$
Solution :
$$\eqalign{ & 2{\cos ^2}\theta + \cos \theta + \left( {k - 1} \right) = 0 \cr & \therefore \,\,\cos \theta = \frac{{ - 1 \pm \sqrt {1 - 8\left( {k - 1} \right)} }}{4} = \frac{{ - 1 \pm \sqrt {9 - 8k} }}{4}. \cr} $$
For real, $$\cos\theta ,9 - 8k \geqslant 0,\,{\text{i}}{\text{.e}}{\text{., }}k \leqslant \frac{9}{8}.$$
Also, $$ - 1 \leqslant \frac{{ - 1 \pm \sqrt {9 - 8k} }}{4} \leqslant 1\,\,{\text{or, }} - 4 \leqslant - 1 \pm \sqrt {9 - 8k} \leqslant 4$$
or, $$ - 3 \leqslant \pm \sqrt {9 - 8k} \leqslant 5$$
$$\eqalign{ & \therefore \,\, - 3 \leqslant - \sqrt {9 - 8k} \,\,{\text{and }}\sqrt {9 - 8k} \leqslant 5 \cr & \Rightarrow \,\,9 - 8k \leqslant 9\,\,{\text{and }}9 - 8k \leqslant 25 \cr & \therefore \,\,k \geqslant 0\,\,{\text{and }}k \geqslant - 2 \cr & \Rightarrow \,\,k \geqslant 0. \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section