Question

The set of all real numbers $$x$$ for which $${x^2} - \left| {x + 2} \right| + x > 0,\,{\text{is}}$$

A. $$\left( { - \infty , - 2} \right) \cup \left( {2,\infty } \right)$$
B. $$\left( { - \infty , - \sqrt 2 } \right) \cup \left( {\sqrt 2 ,\infty } \right)$$  
C. $$\left( { - \infty , - 1} \right) \cup \left( {1,\infty } \right)$$
D. $$\left( {\sqrt 2 ,\infty } \right)$$
Answer :   $$\left( { - \infty , - \sqrt 2 } \right) \cup \left( {\sqrt 2 ,\infty } \right)$$
Solution :
For $$x < - 2,$$
$$\left| {x + 2} \right| = - \left( {x + 2} \right)$$     and the inequality becomes
$$\eqalign{ & {x^2} + x + 2 + x > 0 \cr & \Rightarrow \,{\left( {x + 1} \right)^2} + 1 > 0 \cr & {\text{which is valid }}\forall \,\,x \in R\,\,{\text{but }}x < - 2 \cr & \therefore \,\,x \in \left( { - \infty , - 2} \right)\,\,\,\,\,\,\,\,\,.....\left( 1 \right) \cr & {\text{For }}x \geqslant 2,\left| {x + 2} \right| = x + 2\,\,{\text{and the inequality becomes}} \cr & {x^2} - x - 2 + x > 0 \cr & \Rightarrow \,\,{x^2} > 2 \cr & \Rightarrow \,\,x > \sqrt 2 \,\,{\text{or }}x < - \sqrt 2 \cr & {\text{i}}{\text{.e}}{\text{., }}x \in \left( { - \infty , - \sqrt 2 } \right) \cup \left( {\sqrt 2 ,\infty } \right) \cr & {\text{but }}x \geqslant - 2 \cr & \Rightarrow \,\,x \in \left[ { - 2, - \sqrt 2 } \right) \cup \left( {\sqrt 2 ,\infty } \right)\,\,\,\,\,\,\,.....\left( 2 \right) \cr & {\text{From}}\left( 1 \right){\text{and}}\left( 2 \right) \cr & x \in \left( { - \infty , - 2} \right) \cup \left[ { - 2, - \sqrt 2 } \right) \cup \left( {\sqrt 2 ,\infty } \right) \cr & \Rightarrow \,\,x \in \left( { - \infty , - \sqrt 2 } \right) \cup \left( {\sqrt 2 ,\infty } \right) \cr} $$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section