Question

The set of all possible values of $$\alpha $$ in $$\left[ { - \pi ,\pi } \right]$$  such that $$\sqrt {\frac{{1 - \sin \alpha }}{{1 + \sin \alpha }}} $$   is equal to $$\sec \alpha - \tan \alpha $$   is

A. $$\left[ {0,\frac{\pi }{2}} \right)$$
B. $$\left[ {0,\frac{\pi }{2}} \right) \cup \left( {\frac{\pi }{2},\pi } \right)$$
C. $$\left[ { - \pi ,0} \right]$$
D. $$\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$$  
Answer :   $$\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$$
Solution :
Clearly, $$\alpha \ne \pm \frac{\pi }{2}.$$
$$\eqalign{ & \sec\alpha - \tan\alpha = \frac{{1 - \sin \alpha }}{{\cos \alpha }}\,\,{\text{and}} \cr & \sqrt {\frac{{1 - \sin \alpha }}{{1 + \sin \alpha }}} = \sqrt {\frac{{{{\left( {1 - \sin \alpha } \right)}^2}}}{{{{\cos }^2}\alpha }}} = \left| {\frac{{1 - \sin \alpha }}{{\cos \alpha }}} \right| = \frac{{1 - \sin \alpha }}{{\left| {\cos \alpha } \right|}}. \cr} $$
Hence, these will be equal if $$\cos\alpha > 0,\,{\text{i}}{\text{.e}}{\text{., }} - \frac{\pi }{2} < \alpha < \frac{\pi }{2}.$$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section