Question

The roots of the equation $$1 + z + {z^3} + {z^4} = 0$$     are represented by the vertices of

A. a square
B. an equilateral triangle  
C. a rhombus
D. none of these
Answer :   an equilateral triangle
Solution :
Complex Number mcq solution image
$$\eqalign{ & {\text{Here, }}\left( {1 + z} \right)\left( {1 + {z^3}} \right) = 0 \cr & {\text{or }}{\left( {1 + z} \right)^2}\left( {{z^2} - z + 1} \right) = 0 \cr & \Rightarrow \,\,z = - 1, - 1,\frac{{1 + \sqrt {3}i }}{2}. \cr} $$
The distinct points corresponding to these are
$$\eqalign{ & z = - 1,\frac{{1 + \sqrt {3}i }}{2},\frac{{1 - \sqrt {3}i }}{2} = - 1, - {\omega ^2}, - \omega \cr & AB = \left| {1 - {\omega ^2}} \right| = \left| {{\omega ^2}\left( {\omega - 1} \right)} \right| \cr & AB = \left| {{\omega ^2}} \right|\left| {\omega - 1} \right| = \left| {\omega - 1} \right| \cr & BC = \left| {{\omega ^2} - \omega } \right| = \left| \omega \right|\left| {\omega - 1} \right| = \left| {\omega - 1} \right| \cr & CA = \left| {\omega - 1} \right| \cr & \therefore \,\,AB = BC = CA. \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section