Solution :
Effective resistance,

$$\eqalign{
& \frac{1}{{{R_{{\text{eff}}}}}} = \frac{1}{{{R_1}}} + \frac{1}{{{R_2}}}\,.......\left( {\text{i}} \right) \cr
& {\text{then,}}\,\,{R_1} = 10 + 30 \cr
& {R_1} = 40 \cr
& {\text{Now,}}\,\,{R_2} = 90 + 30 = 120 \cr
& {R_2} = 120 \cr} $$
By Eq. (i),
$$\eqalign{
& \frac{1}{{{R_{{\text{eff}}}}}} = \frac{1}{{40}} + \frac{1}{{120}} \cr
& {R_{{\text{eff}}}} = \frac{{40 \times 120}}{{120 + 40}} = \frac{{4800}}{{160}} = 30\,\Omega \cr} $$
In the balancing condition,
$$\therefore {\text{Current,}}\,\,I = \frac{7}{{\left( {30 + 5} \right)}} = \frac{7}{{35}} = 0.2\,A\,\,\left[ {\because I = \frac{E}{{R + r}}} \right]$$