Question

The range of values of $$r$$ for which the point $$\left( { - 5 + \frac{r}{{\sqrt 2 }},\, - 3 + \frac{r}{{\sqrt 2 }}} \right)$$     is an interior point of the major segment of the circle $${x^2} + {y^2} = 16,$$   cut off by the line $$x + y = 2,$$   is :

A. $$\left( { - \infty ,\,5\sqrt 2 } \right)$$
B. $$\left( {4\sqrt 2 - \sqrt {14} ,\,5\sqrt 2 } \right)$$  
C. $$\left( {4\sqrt 2 - \sqrt {14} ,\,4\sqrt 2 + \sqrt {14} } \right)$$
D. none of these
Answer :   $$\left( {4\sqrt 2 - \sqrt {14} ,\,5\sqrt 2 } \right)$$
Solution :
The given point is an interior point
$$\eqalign{ & \Rightarrow {\left( { - 5 + \frac{r}{{\sqrt 2 }}} \right)^2} + {\left( { - 3 + \frac{r}{{\sqrt 2 }}} \right)^2} - 16 < 0 \cr & \Rightarrow {r^2} - 8\sqrt 2 r + 18 < 0 \cr & \Rightarrow 4\sqrt 2 - \sqrt {14} < r < 4\sqrt 2 + \sqrt {14} \cr} $$
The point is on the major segment $$ \Rightarrow $$ the centre and the point are on the same side of the line $$x + y = 2.$$
$$\eqalign{ & \therefore \,\, - 5 + \frac{r}{{\sqrt 2 }} - 3 + \frac{r}{{\sqrt 2 }} - 2 < 0 \cr & \Rightarrow \,r < 5\sqrt 2 {\text{ So, }}4\sqrt 2 - \sqrt {14} < r < 5\sqrt 2 \cr} $$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section