Question

The range of the function $$f\left( x \right) = {\sin ^{ - 1}}\left( {\log \left[ x \right]} \right) + \log \left( {{{\sin }^{ - 1}}\left[ x \right]} \right);\,$$       (where [.] denotes the greatest integer function) is

A. $$R$$
B. $$\left[ {1,2} \right)$$
C. $$\left\{ {\log \frac{\pi }{2}} \right\}$$  
D. $$\left\{ { - \sin 1} \right\}$$
Answer :   $$\left\{ {\log \frac{\pi }{2}} \right\}$$
Solution :
$$\eqalign{ & {\sin ^{ - 1}}\left( {\log \left[ x \right]} \right){\text{is defined if}}\, - 1 \leqslant \log \left[ x \right] \leqslant 1\,{\text{and }}\left[ x \right] > 0 \cr & \Rightarrow \frac{1}{e} \leqslant \left[ x \right] \leqslant e \cr & \Rightarrow \left[ x \right] = 1,2 \cr & \Rightarrow x \in \left[ {1,3} \right) \cr & {\text{Again}},\,\,\log \left( {{{\sin }^{ - 1}}\left[ x \right]} \right){\text{ is defined if}} \cr & {\sin ^{ - 1}}\left[ x \right] > 0{\text{ and }} - 1 \leqslant \left[ x \right] \leqslant 1 \cr & \Rightarrow \left[ x \right] > 0{\text{ and }} - 1 \leqslant \left[ x \right] \leqslant 1 \cr & \Rightarrow 0 < \left[ x \right] \leqslant 1 \cr & \Rightarrow x \in \left[ {1,2} \right) \cr & \therefore {\text{Domain of }}f\left( x \right) = \left[ {1,2} \right) \cr & {\text{For }}1 \leqslant x < 2,\left[ x \right] = 1 \cr & \therefore f\left( x \right) = {\sin ^{ - 1}}0 + \log \frac{\pi }{2} = \log \frac{\pi }{2},\forall x \in \left[ {1,2} \right) \cr & \therefore {\text{Range of }}f\left( x \right) = \left\{ {\log \frac{\pi }{2}} \right\} \cr} $$

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section