Question

The projections of a vector on the three coordinate axis are $$6,\,- 3,\, 2$$   respectively. The direction cosines of the vector are :

A. $$\frac{6}{5},\,\frac{{ - 3}}{5},\,\frac{2}{5}$$
B. $$\frac{6}{7},\,\frac{{ - 3}}{7},\,\frac{2}{7}$$  
C. $$\frac{{ - 6}}{7},\,\frac{{ - 3}}{7},\,\frac{2}{7}$$
D. $$6,\, - 3,\,2$$
Answer :   $$\frac{6}{7},\,\frac{{ - 3}}{7},\,\frac{2}{7}$$
Solution :
Let $$P\left( {{x_1},\,{y_1},\,{z_1}} \right)$$   and $$Q\left( {{x_2},\,{y_2},\,{z_2}} \right)$$   be the initial and final points of the vector whose projections on the three coordinate axes are $$6,\, - 3,\,2$$
then
$${x_2} - {x_1} = 6\,;\,\,\,{y_2} - {y_1} = - 3\,;\,\,\,{z_2} - \,{z_1} = 2$$
So that direction ratios of $$\overrightarrow {PQ} $$  are $$6,\, - 3,\,2$$
$$\therefore $$ Direction cosines of $$\overrightarrow {PQ} $$  are
$$\eqalign{ & \frac{6}{{\sqrt {{6^2} + {{\left( { - 3} \right)}^2} + {2^2}} }},\,\frac{{ - 3}}{{\sqrt {{6^2} + {{\left( { - 3} \right)}^2} + {2^2}} }},\,\frac{2}{{\sqrt {{6^2} + {{\left( { - 3} \right)}^2} + {2^2}} }} \cr & = \frac{6}{7},\,\frac{{ - 3}}{7},\,\frac{2}{7} \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section