Question

The principle value of the $$\arg \left( z \right)$$  and $$\left| z \right|$$ of the complex number $$z = 1 + \cos \left( {\frac{{11\pi }}{9}} \right) + i\sin \left( {\frac{{11\pi }}{9}} \right)$$       are respectively.

A. $$\frac{{11\pi }}{8},2\cos \left( {\frac{\pi }{{18}}} \right)$$
B. $$ - \frac{{7\pi }}{18}, - 2\cos \left( {\frac{11\pi }{{18}}} \right)$$  
C. $$\frac{{2\pi }}{9},2\cos \left( {\frac{7\pi }{{18}}} \right)$$
D. $$ - \frac{{\pi }}{9}, - 2\cos \left( {\frac{\pi }{{18}}} \right)$$
Answer :   $$ - \frac{{7\pi }}{18}, - 2\cos \left( {\frac{11\pi }{{18}}} \right)$$
Solution :
$$z = 1 + \cos \frac{{11\pi }}{9} + i\sin \frac{{11\pi }}{9}$$
$$\operatorname{Re} \left( z \right) > 0$$   and $$\operatorname{Im} \left( z \right) < 0,$$   so the number lies in the fourth quadrant. Also
$$\eqalign{ & z = 2\cos \frac{{11\pi }}{{18}}\left\{ {\cos \frac{{11\pi }}{{18}} + i\sin \frac{{11\pi }}{{18}}} \right\} \cr & = 2\cos \frac{{11\pi }}{{18}}\left\{ {\cos \left( { - \frac{{7\pi }}{{18}}} \right) + i\sin \left( { - \frac{{7\pi }}{{18}}} \right)} \right\} \cr & \therefore \arg \left( z \right) = - \frac{{7\pi }}{{18}} \cr & \left| z \right| = \left| {2\cos \frac{{11\pi }}{{18}}} \right| = - 2\cos \frac{{11\pi }}{{18}} \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section