Question
The primitive of the function $$x\left| {\cos \,x} \right|$$ when $$\frac{\pi }{2} < x < \pi $$ is given by :
A.
$$\cos \,x + x\,\sin \,x$$
B.
$$ - \cos \,x - x\sin \,x$$
C.
$$x\sin \,x - \cos \,x$$
D.
none of these
Answer :
$$ - \cos \,x - x\sin \,x$$
Solution :
$$f\left( x \right) = x\left| {\cos \,x} \right|,\,\frac{\pi }{2} < x < \pi $$
$$= - x\cos \,x,$$ because $$\cos \,x$$ is negative in $$\left( {\frac{\pi }{2},\,\pi } \right)$$
$$\therefore $$ the required primitive function $$ = \int { - x\cos \,x\,dx} $$
Now use integration by parts.