Question

The positive integer just greater than $${\left( {1 + 0.0001} \right)^{10000}}$$    is

A. 4
B. 5
C. 2
D. 3  
Answer :   3
Solution :
$$\eqalign{ & {\left( {1 + 0.0001} \right)^{10000}} = {\left( {1 + \frac{1}{n}} \right)^n},n = 10000 \cr & = 1 + n.\frac{1}{n} + \frac{{n\left( {n - 1} \right)}}{{2!}}\frac{1}{{{n^2}}} + \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}\frac{1}{{{n^3}}} + ..... \cr & = 1 + 1 + \frac{1}{{2!}}\left( {1 - \frac{1}{n}} \right) + \frac{1}{{3!}}\left( {1 - \frac{1}{n}} \right) + \left( {1 - \frac{2}{n}} \right) + ..... < 1 + \frac{1}{{1!}} + \frac{1}{{2!}} + \frac{1}{{3!}} + ..... + \frac{1}{{\left( {9999} \right)!}} \cr & = 1 + \frac{1}{{1!}} + \frac{1}{{2!}} + .....\,\infty = e < 3 \cr} $$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section