Question

The position vectors of two vertices and the centroid of a triangle are $$\overrightarrow i + \overrightarrow j ,\,2\overrightarrow i - \overrightarrow j + \overrightarrow k $$     and $$\overrightarrow k $$ respectively. The position vector of the third vertex of the triangle is :

A. $$ - 3\overrightarrow i + 2\overrightarrow k $$  
B. $$3\overrightarrow i - 2\overrightarrow k $$
C. $$\overrightarrow i + \frac{2}{3}\overrightarrow k $$
D. none of these
Answer :   $$ - 3\overrightarrow i + 2\overrightarrow k $$
Solution :
The positive vector of the centroid $$ = \frac{{\overrightarrow a + \overrightarrow b + \overrightarrow c }}{3},$$    where $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   are the position vectors of the vertices.
$$\therefore \,\overrightarrow k = \frac{{\overrightarrow i + \overrightarrow j + 2\overrightarrow i - \overrightarrow j + \overrightarrow k + \overrightarrow a }}{3}\,\,\,\,\,\therefore \overrightarrow a = - 3\overrightarrow i + 2\overrightarrow k $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section