Question
The position vectors of two vertices and the centroid of a triangle are $$\overrightarrow i + \overrightarrow j ,\,2\overrightarrow i - \overrightarrow j + \overrightarrow k $$ and $$\overrightarrow k $$ respectively. The position vector of the third vertex of the triangle is :
A.
$$ - 3\overrightarrow i + 2\overrightarrow k $$
B.
$$3\overrightarrow i - 2\overrightarrow k $$
C.
$$\overrightarrow i + \frac{2}{3}\overrightarrow k $$
D.
none of these
Answer :
$$ - 3\overrightarrow i + 2\overrightarrow k $$
Solution :
The positive vector of the centroid $$ = \frac{{\overrightarrow a + \overrightarrow b + \overrightarrow c }}{3},$$ where $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ are the position vectors of the vertices.
$$\therefore \,\overrightarrow k = \frac{{\overrightarrow i + \overrightarrow j + 2\overrightarrow i - \overrightarrow j + \overrightarrow k + \overrightarrow a }}{3}\,\,\,\,\,\therefore \overrightarrow a = - 3\overrightarrow i + 2\overrightarrow k $$