Question

The population $$p\left( t \right)$$ at time $$t$$ of a certain mouse species satisfies the differential equation $$\frac{{dp\left( t \right)}}{{dt}} = 0.5\,p\left( t \right) - 450.$$     If $$p\left( 0 \right) = 850,$$   then the time at which the population becomes zero is :

A. $$2\ln \,18$$  
B. $$\ln \,9$$
C. $$\frac{1}{2}\ln \,18$$
D. $$\ln \,18$$
Answer :   $$2\ln \,18$$
Solution :
Given differential equation is
$$\eqalign{ & \frac{{dp\left( t \right)}}{{dt}} = 0.5\,p\left( t \right) - 450 \cr & \Rightarrow \frac{{dp\left( t \right)}}{{dt}} = \frac{1}{2}\,p\left( t \right) - 450 \cr & \Rightarrow \frac{{dp\left( t \right)}}{{dt}} = \frac{{p\left( t \right) - 900}}{2} \cr & \Rightarrow 2\frac{{dp\left( t \right)}}{{dt}} = - \left[ {900 - \,p\left( t \right)} \right] \cr & \Rightarrow 2\frac{{dp\left( t \right)}}{{900 - \,p\left( t \right)}} = - dt \cr} $$
Integrate both sides, we get
$$\eqalign{ & - 2\int {\frac{{dp\left( t \right)}}{{900 - \,p\left( t \right)}}} = \int {dt} \cr & {\text{Let }}900 - \,p\left( t \right) = u \cr & \Rightarrow - dp\left( t \right) = du \cr & \therefore {\text{We have, }}2\int {\frac{{du}}{u} = \int {dt} } \,\,\,\, \Rightarrow 2\,\ln \,u = t + c \cr & \Rightarrow 2\,\ln \left[ {900 - \,p\left( t \right)} \right] = t + c \cr & {\text{when }}t = 0,\,\,\,\,p\left( 0 \right) = 850 \cr & 2\,\ln \,\left( {50} \right) = c \cr & \Rightarrow 2\left[ {\ln \left( {\frac{{900 - \,p\left( t \right)}}{{50}}} \right)} \right] = t \cr & \Rightarrow 900 - \,p\left( t \right) = 50{e^{\frac{t}{2}}} \cr & \Rightarrow p\left( t \right) = 900 - \,50{e^{\frac{t}{2}}} \cr & {\text{Let }}p\left( {{t_1}} \right) = 0 \cr & 0 = 900 - - \,50{e^{\frac{{{t_1}}}{2}}} \cr & \therefore {t_1} = \,2\,\ln \,18 \cr} $$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section