Question
The population $$p\left( t \right)$$ at time $$t$$ of a certain mouse species satisfies the differential equation $$\frac{{dp\left( t \right)}}{{dt}} = 0.5\,p\left( t \right) - 450.$$ If $$p\left( 0 \right) = 850,$$ then the time at which the population becomes
zero is :
A.
$$2\ln \,18$$
B.
$$\ln \,9$$
C.
$$\frac{1}{2}\ln \,18$$
D.
$$\ln \,18$$
Answer :
$$2\ln \,18$$
Solution :
Given differential equation is
$$\eqalign{
& \frac{{dp\left( t \right)}}{{dt}} = 0.5\,p\left( t \right) - 450 \cr
& \Rightarrow \frac{{dp\left( t \right)}}{{dt}} = \frac{1}{2}\,p\left( t \right) - 450 \cr
& \Rightarrow \frac{{dp\left( t \right)}}{{dt}} = \frac{{p\left( t \right) - 900}}{2} \cr
& \Rightarrow 2\frac{{dp\left( t \right)}}{{dt}} = - \left[ {900 - \,p\left( t \right)} \right] \cr
& \Rightarrow 2\frac{{dp\left( t \right)}}{{900 - \,p\left( t \right)}} = - dt \cr} $$
Integrate both sides, we get
$$\eqalign{
& - 2\int {\frac{{dp\left( t \right)}}{{900 - \,p\left( t \right)}}} = \int {dt} \cr
& {\text{Let }}900 - \,p\left( t \right) = u \cr
& \Rightarrow - dp\left( t \right) = du \cr
& \therefore {\text{We have, }}2\int {\frac{{du}}{u} = \int {dt} } \,\,\,\, \Rightarrow 2\,\ln \,u = t + c \cr
& \Rightarrow 2\,\ln \left[ {900 - \,p\left( t \right)} \right] = t + c \cr
& {\text{when }}t = 0,\,\,\,\,p\left( 0 \right) = 850 \cr
& 2\,\ln \,\left( {50} \right) = c \cr
& \Rightarrow 2\left[ {\ln \left( {\frac{{900 - \,p\left( t \right)}}{{50}}} \right)} \right] = t \cr
& \Rightarrow 900 - \,p\left( t \right) = 50{e^{\frac{t}{2}}} \cr
& \Rightarrow p\left( t \right) = 900 - \,50{e^{\frac{t}{2}}} \cr
& {\text{Let }}p\left( {{t_1}} \right) = 0 \cr
& 0 = 900 - - \,50{e^{\frac{{{t_1}}}{2}}} \cr
& \therefore {t_1} = \,2\,\ln \,18 \cr} $$