Question

The point $$P$$ is the intersection of the straight line joining the points $$Q\left( {2,\,3,\,5} \right)$$   and $$R\left( {1,\, - 1,\,4} \right)$$   with the plane $$5x-4y-z=1.$$    If $$S$$ is the foot of the perpendicular drawn from the point $$T\left( {2,\,1,\,4} \right)$$   to $$QR,$$  then the length of the line segment $$PS$$ is :

A. $$\frac{1}{{\sqrt 2 }}$$  
B. $$\sqrt 2 $$
C. $$2$$
D. $$2\sqrt 2 $$
Answer :   $$\frac{1}{{\sqrt 2 }}$$
Solution :
Equation of straight line joining $$Q\left( {2,\,3,\,5} \right)$$   and $$R\left( {1,\, - 1,\,4} \right)$$   is
$$\eqalign{ & \frac{{x - 2}}{{ - 1}} = \frac{{y - 3}}{{ - 4}} = \frac{{z - 5}}{1} = \lambda \cr & {\text{Let }}P\left( { - \lambda + 2,\, - 4\lambda + 3,\, - \lambda + 5} \right) \cr} $$
As $$P$$ lies on $$5x-4y-z=1$$
$$\eqalign{ & \therefore - 5\lambda + 10 + 16\lambda - 12 + \lambda - 5 = 1 \cr & \Rightarrow 12\lambda = 8 \cr & \Rightarrow \lambda = \frac{2}{3} \cr & \therefore P = \left( {\frac{4}{3},\,\frac{1}{3},\,\frac{{13}}{3}} \right) \cr} $$
Now let point $$S$$ on $$QR$$  be
$$\left( { - \mu + 2,\, - 4\mu + 3,\, - \mu + 5} \right)$$
$$\because \,S$$  is the foot of perpendicular drawn from $$T\left( {2,\,1,\,4} \right)$$   to $$QR,$$  where dr’s of $$ST$$  are $$\mu ,\,4\mu - 2,\,\mu - 1$$   and dr’s of $$QR$$ are $$-1,\,-4,\,-1$$
$$\eqalign{ & \therefore - \mu - 16\mu + 8 - \mu + 1 = 0 \cr & \Rightarrow 18\mu = 9 \cr & \Rightarrow \mu = \frac{1}{2} \cr & \therefore S = \left( {\frac{3}{2},\,1,\,\frac{9}{2}} \right) \cr} $$
$$\therefore $$ Distance between $$P$$ and $$S$$
$$\eqalign{ & = \sqrt {{{\left( {\frac{4}{3} - \,\frac{3}{2}} \right)}^2} + {{\left( {\frac{1}{3} - 1} \right)}^2} + {{\left( {\frac{{13}}{3} - \frac{9}{2}} \right)}^2}} \cr & = \sqrt {\frac{1}{{36}} + \frac{4}{9} + \frac{1}{{36}}} \cr & = \frac{1}{{\sqrt 2 }} \cr} $$
Three Dimensional Geometry mcq solution image

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section