Question

The point $$\left( {a,\,2a} \right)$$  is an interior point of the region bounded by the parabola $${y^2} = 16x$$   and the double ordinate through the focus. Then $$a$$ belongs to the open interval :

A. $$a < 4$$
B. $$0 < a < 4$$  
C. $$0 < a < 2$$
D. $$a > 4$$
Answer :   $$0 < a < 4$$
Solution :
Parabola mcq solution image
$$\left( {a,\,2a} \right)$$  is an interior point of $${y^2} - 16x = 0$$    if $${\left( {2a} \right)^2} - 16a < 0,$$    i.e., $${a^2} - 4a < 0$$
$$V\left( {0,\,0} \right)$$  and $$\left( {a,\,2a} \right)$$  are on the same side of $$x - 4 = 0.$$  So, $$a - 4 < 0,$$   i.e., $$a < 4$$
Now, $${a^2} - 4a < 0\,\,\,\,\,\, \Rightarrow 0 < a < 4$$

Releted MCQ Question on
Geometry >> Parabola

Releted Question 1

Consider a circle with its centre lying on the focus of the parabola $${y^2} = 2px$$   such that it touches the directrix of the parabola. Then a point of intersection of the circle and parabola is-

A. $$\left( {\frac{p}{2},\,p} \right){\text{ or }}\left( {\frac{p}{2},\, - p} \right)$$
B. $$\left( {\frac{p}{2},\, - \frac{p}{2}} \right)$$
C. $$\left( { - \frac{p}{2},\,p} \right)$$
D. $$\left( { - \frac{p}{2},\, - \frac{p}{2}} \right)$$
Releted Question 2

The curve described parametrically by $$x = {t^2} + t + 1,\,\,y = {t^2} - t + 1$$      represents-

A. a pair of straight lines
B. an ellipse
C. a parabola
D. a hyperbola
Releted Question 3

If $$x+y=k$$   is normal to $${y^2} = 12x,$$   then $$k$$ is-

A. $$3$$
B. $$9$$
C. $$ - 9$$
D. $$ - 3$$
Releted Question 4

If the line $$x-1=0$$   is the directrix of the parabola $${y^2} - kx + 8 = 0,$$    then one of the values of $$k$$ is-

A. $$\frac{1}{8}$$
B. $$8$$
C. $$4$$
D. $$\frac{1}{4}$$

Practice More Releted MCQ Question on
Parabola


Practice More MCQ Question on Maths Section