Question

The parabola $${y^2} = kx$$   makes an intercept of length 4 on the line $$x - 2y = 1.$$   Then $$k$$ is :

A. $$\frac{{\sqrt {105} - 5}}{{10}}$$  
B. $$\frac{{5 - \sqrt {105} }}{{10}}$$
C. $$\frac{{5 + \sqrt {105} }}{{10}}$$
D. none of these
Answer :   $$\frac{{\sqrt {105} - 5}}{{10}}$$
Solution :
$$\eqalign{ & {\text{Solving }}x - 2y = 1,\,{y^2} = kx,\,{\text{ we get}}\, \cr & {y^2} = k\left( {1 + 2y} \right){\text{ or }}{y^2} - 2ky - k = 0 \cr & \therefore \,{y_1} + {y_2} = 2k,\,\,{y_1}.{y_2} = - k \cr & \therefore 16 = {\left( {{x_1} - {x_2}} \right)^2} + {\left( {{y_1} - {y_2}} \right)^2} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\left( {\frac{{y_1^2}}{k} - \frac{{y_2^2}}{k}} \right)^2} + {\left( {{y_1} - {y_2}} \right)^2} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\left( {{y_1} - {y_2}} \right)^2}.\left\{ {\frac{{{{\left( {{y_1} + {y_2}} \right)}^2}}}{{{k^2}}} + 1} \right\} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left\{ {{{\left( {{y_1} + {y_2}} \right)}^2} - 4{y_1}.{y_2}} \right\}\left\{ {\frac{{4{k^2}}}{{{k^2}}} + 1} \right\} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 5\left\{ {4{k^2} + 4k} \right\} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 20{k^2} + 20k\,;\,\,\,\,\,\,\,\,\,\,\,\therefore \,5{k^2} + 5k - 4 = 0 \cr} $$

Releted MCQ Question on
Geometry >> Parabola

Releted Question 1

Consider a circle with its centre lying on the focus of the parabola $${y^2} = 2px$$   such that it touches the directrix of the parabola. Then a point of intersection of the circle and parabola is-

A. $$\left( {\frac{p}{2},\,p} \right){\text{ or }}\left( {\frac{p}{2},\, - p} \right)$$
B. $$\left( {\frac{p}{2},\, - \frac{p}{2}} \right)$$
C. $$\left( { - \frac{p}{2},\,p} \right)$$
D. $$\left( { - \frac{p}{2},\, - \frac{p}{2}} \right)$$
Releted Question 2

The curve described parametrically by $$x = {t^2} + t + 1,\,\,y = {t^2} - t + 1$$      represents-

A. a pair of straight lines
B. an ellipse
C. a parabola
D. a hyperbola
Releted Question 3

If $$x+y=k$$   is normal to $${y^2} = 12x,$$   then $$k$$ is-

A. $$3$$
B. $$9$$
C. $$ - 9$$
D. $$ - 3$$
Releted Question 4

If the line $$x-1=0$$   is the directrix of the parabola $${y^2} - kx + 8 = 0,$$    then one of the values of $$k$$ is-

A. $$\frac{1}{8}$$
B. $$8$$
C. $$4$$
D. $$\frac{1}{4}$$

Practice More Releted MCQ Question on
Parabola


Practice More MCQ Question on Maths Section