Question

The order and degree of the differential equation of the family of ellipses having the same foci, are respectively :

A. 1, 1
B. 2, 1
C. 2, 2
D. 1, 2  
Answer :   1, 2
Solution :
The equation of the family is $$\frac{{{x^2}}}{{{a^2} + \lambda }} + \frac{{{y^2}}}{{{b^2} + \lambda }} = 1$$     because they have the same foci $$\left( { \pm \sqrt {{a^2} + {b^2}} ,\,0} \right).$$
On differentiation,
$$\eqalign{ & \frac{{2x}}{{{d^2} + \lambda }} + \frac{{2y}}{{{b^2} + \lambda }}.\frac{{dy}}{{dx}} = 0 \cr & {\text{or }}\frac{x}{{{a^2} + \lambda }} + \frac{{yp}}{{{b^2} + \lambda }} = 0,\,\,\left( {p = \frac{{dy}}{{dx}}} \right) \cr & {\text{or }}x\left( {{b^2} + \lambda } \right) + yp\left( {{a^2} + \lambda } \right) = 0 \cr & \Rightarrow \lambda = \frac{{ - {b^2}x - {a^2}yp}}{{x + yp}} \cr} $$
$$\therefore $$ the differential equation is,
$$\eqalign{ & \frac{{{x^2}}}{{{a^2} + \frac{{ - {b^2}x - {a^2}yp}}{{x + yp}}}} + \frac{{{y^2}}}{{{b^2} + \frac{{ - {b^2}x - {a^2}yp}}{{x + yp}}}} = 1 \cr & {\text{or }}\frac{{x\left( {x + yp} \right)}}{{{a^2} - {b^2}}} + \frac{{y\left( {x + yp} \right)}}{{\left( {{b^2} - {a^2}} \right)p}} = 1 \cr} $$
So, order $$=1$$   and degree $$=2.$$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section