Question

The order and degree of the differential equation of the family of circles touching the $$x$$-axis at the origin, are respectively :

A. $$1,\,1$$  
B. $$1,\,2$$
C. $$2,\,1$$
D. $$2,\,2$$
Answer :   $$1,\,1$$
Solution :
The equation of the family is
$$\eqalign{ & {\left( {x - c} \right)^2} + {y^2} = {c^2}{\text{ or }}{x^2} + {y^2} - 2cx = 0 \cr & {\text{or }}\frac{{{x^2} + {y^2}}}{x} = 2c\,\,\,\,\,\,\,\,\, \Rightarrow \frac{{\left( {2x + 2y\frac{{dy}}{{dx}}} \right)x - \left( {{x^2} + {y^2}} \right).1}}{{{x^2}}} = 0 \cr} $$
So, degree $$=1$$  order $$=1$$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section