Question

The number of terms with integral co-efficients in the expansion of $${\left( {{7^{\frac{1}{3}}} + {5^{\frac{1}{2}}} \cdot x} \right)^{600}}$$   is

A. 100
B. 50
C. 101  
D. None of these
Answer :   101
Solution :
$${t_{r + 1}} = {\,^{600}}{C_r} \cdot {7^{\frac{{600 - r}}{3}}} \cdot {5^{\frac{r}{2}}}{x^r}.$$
Here, $$0 \leqslant r \leqslant 600$$   and $$\frac{r}{2},200 - \frac{r}{3}$$   are integers.
∴ $$r$$ should be a multiple of 6
$$\therefore \,\,r = 0,6,12,.....,600.$$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section