Question

The number of solution of $$\tan x + \sec x = 2\cos x$$     in $$\left[ {0,2\pi } \right)$$  is

A. 2
B. 3  
C. 0
D. 1
Answer :   3
Solution :
The given equation is $$\tan x + \sec x = 2\cos x;$$
$$\eqalign{ & \Rightarrow \,\,\sin x + 1 = 2{\cos ^2}x \cr & \Rightarrow \,\,\sin x + 1 = 2\left( {1 - {{\sin }^2}x} \right); \cr & \Rightarrow \,\,2{\sin ^2}x + \sin x - 1 = 0; \cr & \Rightarrow \,\,\left( {2\sin x - 1} \right)\left( {\sin x + 1} \right) = 0 \cr & \Rightarrow \,\,\sin x = \frac{1}{2}, - 1.; \cr & \Rightarrow \,\,x = {30^ \circ },{150^ \circ },{270^ \circ }. \cr} $$

Releted MCQ Question on
Trigonometry >> Trignometric Equations

Releted Question 1

The equation $$2\,{\cos ^2}\frac{x}{2}{\sin ^2}x = {x^2} + {x^{ - 2}};0 < x \leqslant \frac{\pi }{2}$$        has

A. no real solution
B. one real solution
C. more than one solution
D. none of these
Releted Question 2

The general solution of the trigonometric equation $$\sin x + \cos x = 1$$    is given by:

A. $$x = 2n\pi ;\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
B. $$x = 2n\pi + \frac{\pi }{2};\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
C. $$x = n\pi + {\left( { - 1} \right)^n}\,\,\frac{\pi }{4} - \frac{\pi }{4}$$
D. none of these
Releted Question 3

The general solution of $$\sin \,x - 3\,\sin \,2x\, + \sin \,3x\, = \cos x - 3\,\cos \,\,2x + \cos \,3x$$           is

A. $$n\pi + \frac{\pi }{8}$$
B. $$\frac{{n\pi }}{2} + \frac{\pi }{8}$$
C. $${\left( { - 1} \right)^n}\frac{{n\pi }}{2} + \frac{\pi }{8}$$
D. $$2n\pi + {\cos ^{ - 1}}\frac{3}{2}$$
Releted Question 4

Number of solutions of the equation $$\tan x + \sec x = 2\cos x$$     lying in the interval $$\left[ {0,2\pi } \right]$$  is:

A. 0
B. 1
C. 2
D. 3

Practice More Releted MCQ Question on
Trignometric Equations


Practice More MCQ Question on Maths Section