Question

The number of real solutions of $$1 + \left| {{e^x} - 1} \right| = {e^x}\left( {{e^x} - 2} \right)$$     is

A. 0
B. 1  
C. 2
D. 4
Answer :   1
Solution :
$$\eqalign{ & 2 + \left| {{e^x} - 1} \right| = {\left( {{e^x}} \right)^2} - 2{e^x} + 1 = {\left| {{e^x} - 1} \right|^2} \cr & \therefore \,\,{\left| {{e^x} - 1} \right|^2} - \left| {{e^x} - 1} \right| - 2 = 0 \cr & {\text{or, }}\left| {{e^x} - 1} \right| = 2, - 1 \cr & \Rightarrow \,\,\left| {{e^x} - 1} \right| = 2 \cr & \Rightarrow \,\,{e^x} - 1 = 2, - 2 \cr & \Rightarrow \,\,{e^x} = 3, - 1 \cr & \Rightarrow \,\,{e^x} = 3. \cr} $$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section