Question

The number of points with integral coordinates that lie in the interior of the region common to the circle $${x^2} + {y^2} = 16$$   and the parabola $${y^2} = 4x$$  is :

A. 8  
B. 10
C. 16
D. none of these
Answer :   8
Solution :
$$\left( {\lambda ,\,\mu } \right)$$  is interior to both the curves if $${\lambda ^2} + {\mu ^2} - 16 < 0$$    and $${\mu ^2} - 4\lambda < 0$$
Now, $${\mu ^2} - 4\lambda < 0\,\,\,\, \Rightarrow \lambda > {\left( {\frac{\mu }{2}} \right)^2}$$
Hence, if $$\mu = 0,\,\lambda = 1,\,2,\,3,\,.....;$$     if $$\mu = 1,\,\lambda = 1,\,2,\,3,\,.....;$$     if $$\mu = 2,\,\lambda = 2,\,3,\,.....;$$     if $$\mu = 3,\,\lambda = 3,\,4\,.....;$$
Also $${\lambda ^2} + {m^2} - 16 < 0\,\,\,\,\, \Rightarrow {\lambda ^2} < 16 - {\mu ^2}$$
Hence, if $$\mu = 0,\,\lambda = 1,\,2,\,3\,;$$    if $$\mu = 1,\,\lambda = 1,\,2,\,3\,;$$    if $$\mu = 2,\,\lambda = 2,\,3\,;$$    if $$\mu = 3,\,\lambda $$  has no integral value.
$$\therefore \,\,\left( {1,\,0} \right),\,\left( {2,\,0} \right),\,\left( {3,\,0} \right),\,\left( {1,\,1} \right),\,\left( {2,\,1} \right),\,\left( {3,\,1} \right),\,\left( {2,\,2} \right),\,\left( {3,\,2} \right)$$           are the possible points.

Releted MCQ Question on
Geometry >> Parabola

Releted Question 1

Consider a circle with its centre lying on the focus of the parabola $${y^2} = 2px$$   such that it touches the directrix of the parabola. Then a point of intersection of the circle and parabola is-

A. $$\left( {\frac{p}{2},\,p} \right){\text{ or }}\left( {\frac{p}{2},\, - p} \right)$$
B. $$\left( {\frac{p}{2},\, - \frac{p}{2}} \right)$$
C. $$\left( { - \frac{p}{2},\,p} \right)$$
D. $$\left( { - \frac{p}{2},\, - \frac{p}{2}} \right)$$
Releted Question 2

The curve described parametrically by $$x = {t^2} + t + 1,\,\,y = {t^2} - t + 1$$      represents-

A. a pair of straight lines
B. an ellipse
C. a parabola
D. a hyperbola
Releted Question 3

If $$x+y=k$$   is normal to $${y^2} = 12x,$$   then $$k$$ is-

A. $$3$$
B. $$9$$
C. $$ - 9$$
D. $$ - 3$$
Releted Question 4

If the line $$x-1=0$$   is the directrix of the parabola $${y^2} - kx + 8 = 0,$$    then one of the values of $$k$$ is-

A. $$\frac{1}{8}$$
B. $$8$$
C. $$4$$
D. $$\frac{1}{4}$$

Practice More Releted MCQ Question on
Parabola


Practice More MCQ Question on Maths Section