Question

The number of points with integral coordinates that are interior to the circle $${x^2} + {y^2} = 16$$   is :

A. 43
B. 49
C. 45  
D. 51
Answer :   45
Solution :
The number of points is equal to the number of integral solutions $$\left( {x,\,y} \right)$$  such that $${x^2} + {y^2} < 16.$$   So $$x,\,y$$  are integers such that $$ - 3\, \leqslant x \leqslant 3,\, - 3 \leqslant y \leqslant 3$$      satisfying the inequation $${x^2} + {y^2} < 16.$$   The number of selections of values of $$x$$ is 7, namely $$ - 3,\, - 2,\, - 1,\,0,\,1,\,2,\,3.$$     The same is true for $$y.$$ So the number of ordered pairs $$\left( {x,\,y} \right)$$  is $$7 \times 7.$$  But $$\left( {3,\,3} \right),\,\left( {3,\, - 3} \right),\,\left( { - 3,\,3} \right),\,\left( { - 3,\, - 3} \right)$$       are rejected because they do not satisfy the inequation $${x^2} + {y^2} < 16.$$   So, the number of points is 45.

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section