Question
The number of points with integral coordinates that are interior to the circle $${x^2} + {y^2} = 16$$ is :
A.
43
B.
49
C.
45
D.
51
Answer :
45
Solution :
The number of points is equal to the number of integral solutions $$\left( {x,\,y} \right)$$ such that $${x^2} + {y^2} < 16.$$ So $$x,\,y$$ are integers such that $$ - 3\, \leqslant x \leqslant 3,\, - 3 \leqslant y \leqslant 3$$ satisfying the inequation $${x^2} + {y^2} < 16.$$ The number of selections of values of $$x$$ is 7, namely $$ - 3,\, - 2,\, - 1,\,0,\,1,\,2,\,3.$$ The same is true for $$y.$$ So the number of ordered pairs $$\left( {x,\,y} \right)$$ is $$7 \times 7.$$ But $$\left( {3,\,3} \right),\,\left( {3,\, - 3} \right),\,\left( { - 3,\,3} \right),\,\left( { - 3,\, - 3} \right)$$ are rejected because they do not satisfy the inequation $${x^2} + {y^2} < 16.$$ So, the number of points is 45.