Question

The number of points in $$\left( {1,\,3} \right)$$  where $$f\left( x \right) = {a^{\left[ {{x^2}} \right]}},\,a > 1,$$    is not differentiable, where $$\left[ x \right]$$ denotes the integral part of $$x.$$

A. 5
B. 7  
C. 9
D. 11
Answer :   7
Solution :
Here $$1 < x < 3$$   and in this interval $${x^2}$$ is an increasing functions, thus $$1 < {x^2} < 9$$
$$\eqalign{ & \left[ {{x^2}} \right] = 1,\,1 \leqslant x < \sqrt 2 \cr & = 2,\,\sqrt 2 \leqslant x < \sqrt 3 \cr & = 3,\,\sqrt 3 \leqslant x < 2 \cr & = 4,\,2 \leqslant x < \sqrt 5 \cr & = 5,\,\sqrt 5 \leqslant x < \sqrt 6 \cr & = 6,\,\sqrt 6 \leqslant x < \sqrt 7 \cr & = 7,\,\sqrt 7 \leqslant x < \sqrt 8 \cr & = 8,\,\sqrt 8 \leqslant x < 3 \cr} $$
Clearly, $$\left[ {{x^2}} \right]$$ and $${a^{\left[ {{x^2}} \right]}}$$ is discontinuous and not differentiable at only $$7$$ points, $$x = \sqrt 2 ,\,\sqrt 3 ,\,2,\,\sqrt 5 ,\,\sqrt 6 ,\,\sqrt 7 ,\,\sqrt 8 $$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section