Question

The number of integral values of $$k$$ for which the equation 7 $$\cos x + 5\sin x = 2k + 1$$     has a solution is

A. 4
B. 8  
C. 10
D. 12
Answer :   8
Solution :
We know that
$$ \Rightarrow \,\, - \sqrt {{a^2} + {b^2}} \leqslant a\cos \theta + b\sin \theta \leqslant \sqrt {{a^2} + {b^2}} $$           NOTE THIS STEP
$$\eqalign{ & \Rightarrow \,\, - \sqrt {74} \leqslant 7\cos x + 5\sin x \leqslant \sqrt {74} \cr & \Rightarrow \,\, - \sqrt {74} \leqslant 2k + 1 \leqslant \sqrt {74} \cr & \Rightarrow \,\, - 8.6 \leqslant 2k + 1 \leqslant 8.6 \cr & \Rightarrow \,\, - 4.8 \leqslant k \leqslant 3.8 \cr} $$
(considering only integral values)
⇒ $$k$$ can take 8 integral values.

Releted MCQ Question on
Trigonometry >> Trignometric Equations

Releted Question 1

The equation $$2\,{\cos ^2}\frac{x}{2}{\sin ^2}x = {x^2} + {x^{ - 2}};0 < x \leqslant \frac{\pi }{2}$$        has

A. no real solution
B. one real solution
C. more than one solution
D. none of these
Releted Question 2

The general solution of the trigonometric equation $$\sin x + \cos x = 1$$    is given by:

A. $$x = 2n\pi ;\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
B. $$x = 2n\pi + \frac{\pi }{2};\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
C. $$x = n\pi + {\left( { - 1} \right)^n}\,\,\frac{\pi }{4} - \frac{\pi }{4}$$
D. none of these
Releted Question 3

The general solution of $$\sin \,x - 3\,\sin \,2x\, + \sin \,3x\, = \cos x - 3\,\cos \,\,2x + \cos \,3x$$           is

A. $$n\pi + \frac{\pi }{8}$$
B. $$\frac{{n\pi }}{2} + \frac{\pi }{8}$$
C. $${\left( { - 1} \right)^n}\frac{{n\pi }}{2} + \frac{\pi }{8}$$
D. $$2n\pi + {\cos ^{ - 1}}\frac{3}{2}$$
Releted Question 4

Number of solutions of the equation $$\tan x + \sec x = 2\cos x$$     lying in the interval $$\left[ {0,2\pi } \right]$$  is:

A. 0
B. 1
C. 2
D. 3

Practice More Releted MCQ Question on
Trignometric Equations


Practice More MCQ Question on Maths Section