Question

The number of distinct solutions of $$\sin 5\theta \cdot \cos 3\theta = \sin 9\theta \cdot \cos 7\theta $$      in $$\left[ {0,\frac{\pi }{2}} \right]$$  is

A. 4
B. 5
C. 8
D. 9  
Answer :   9
Solution :
$$\eqalign{ & \sin 8\theta + \sin 2\theta = \sin 16\theta + \sin 2\theta \,\,\,{\text{or, }}\sin 16\theta = \sin 8\theta \cr & \therefore \,\,16\theta = n\pi + {\left( { - 1} \right)^n}8\theta \cr & \Rightarrow \,\,8\theta = 2m\pi ,\,{\text{when }}n\,{\text{is even}} \cr & 24\theta = \left( {2m + 1} \right)\pi ,\,{\text{when }}n\,{\text{is odd}} \cr & \therefore \,\,\theta = \frac{{m\pi }}{4},\frac{{\left( {2m + 1} \right)\pi }}{{24}},\,{\text{when }}m \in {\Bbb Z} \cr & \theta = 0,\frac{\pi }{4},\frac{\pi }{2}\,{\text{and }}\frac{\pi }{{24}},\frac{\pi }{8},\frac{{5\pi }}{{24}},\frac{{7\pi }}{{24}},\frac{{3\pi }}{8},\frac{{11\pi }}{{24}}. \cr} $$

Releted MCQ Question on
Trigonometry >> Trignometric Equations

Releted Question 1

The equation $$2\,{\cos ^2}\frac{x}{2}{\sin ^2}x = {x^2} + {x^{ - 2}};0 < x \leqslant \frac{\pi }{2}$$        has

A. no real solution
B. one real solution
C. more than one solution
D. none of these
Releted Question 2

The general solution of the trigonometric equation $$\sin x + \cos x = 1$$    is given by:

A. $$x = 2n\pi ;\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
B. $$x = 2n\pi + \frac{\pi }{2};\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
C. $$x = n\pi + {\left( { - 1} \right)^n}\,\,\frac{\pi }{4} - \frac{\pi }{4}$$
D. none of these
Releted Question 3

The general solution of $$\sin \,x - 3\,\sin \,2x\, + \sin \,3x\, = \cos x - 3\,\cos \,\,2x + \cos \,3x$$           is

A. $$n\pi + \frac{\pi }{8}$$
B. $$\frac{{n\pi }}{2} + \frac{\pi }{8}$$
C. $${\left( { - 1} \right)^n}\frac{{n\pi }}{2} + \frac{\pi }{8}$$
D. $$2n\pi + {\cos ^{ - 1}}\frac{3}{2}$$
Releted Question 4

Number of solutions of the equation $$\tan x + \sec x = 2\cos x$$     lying in the interval $$\left[ {0,2\pi } \right]$$  is:

A. 0
B. 1
C. 2
D. 3

Practice More Releted MCQ Question on
Trignometric Equations


Practice More MCQ Question on Maths Section