Question

The number of distinct real roots of \[\left| {\begin{array}{*{20}{c}} {\sin x}&{\cos x}&{\cos x}\\ {\cos x}&{\sin x}&{\cos x}\\ {\cos x}&{\cos x}&{\sin x} \end{array}} \right| = 0\]      in the interval $$ - \frac{\pi }{4} \leqslant x \leqslant \frac{\pi }{4}$$    is

A. 0
B. 2
C. 1  
D. 3
Answer :   1
Solution :
To simplify the det. Let $$\sin x = a;\cos x = b$$     the equation becomes
\[\begin{array}{l} \left| {\begin{array}{*{20}{c}} a&b&b\\ b&a&b\\ b&b&a \end{array}} \right| = 0\,\,{\rm{Operating }}\,\,{C_2} - {C_1};{C_3} - {C_2}\,{\rm{we\, get}}\\ \left| {\begin{array}{*{20}{c}} a&{b - a}&0\\ b&{a - b}&{b - a}\\ b&0&{a - b} \end{array}} \right| = 0 \end{array}\]
$$\eqalign{ & \Rightarrow \,\,a{\left( {a - b} \right)^2} - \left( {b - a} \right)\left[ {b\left( {a - b} \right) - b\left( {b - a} \right)} \right] = 0 \cr & \Rightarrow \,\,a{\left( {a - b} \right)^2} - 2b\left( {b - a} \right)\left( {a - b} \right) = 0 \cr & \Rightarrow \,\,{\left( {a - b} \right)^2}\left( {a - 2b} \right) = 0 \cr & \Rightarrow \,\,\left( {a = b} \right){\text{or }}a = 2b \cr & \Rightarrow \,\,\frac{a}{b} = 1\,{\text{or }}\frac{a}{b} = 2 \cr & \Rightarrow \,\,\tan x = 1\,\,{\text{or }}\tan x = 2.\,{\text{But we have }} - \frac{\pi }{4} \leqslant x \leqslant \frac{\pi }{4} \cr & \Rightarrow \,\,\tan \left( { - \frac{\pi }{4}} \right) \leqslant \tan x \leqslant \tan \left( {\frac{\pi }{4}} \right) \cr & \Rightarrow \,\, - 1 \leqslant \tan x \leqslant 1 \cr & \therefore \,\,\tan x = 1 \cr & \Rightarrow \,\,x = \frac{\pi }{4} \cr} $$
∴ Only one real root is there.

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section