Question

The number of common tangents to the circles $${x^2} + {y^2} - 4x - 6y - 12 = 0$$      and $${x^2} + {y^2} + 6x + 18y + 26 = 0$$      is :

A. $$3$$  
B. $$4$$
C. $$1$$
D. $$2$$
Answer :   $$3$$
Solution :
$${x^2} + {y^2} - 4x - 6y - 12 = 0.....({\text{i}})$$
Centre, $${c_1} = \left( {2,\,3} \right)$$    and Radius, $${r_1} = 5\,{\text{units}}$$
$${x^2} + {y^2} + 6x + 18y + 26 = 0.....({\text{ii}})$$
Centre, $${c_2} = \left( { - 3,\, - 9} \right)$$    and Radius, $${r_2} = 8\,{\text{units}}$$
$$\eqalign{ & {C_1}{C_2} = \sqrt {{{\left( {2 + 3} \right)}^2} + {{\left( {3 + 9} \right)}^2}} = 13\,{\text{units}} \cr & {r_1} + {r_2} = 5 + 8 = 13 \cr & \therefore {C_1}{C_2} = {r_1} + {r_2} \cr} $$
Circle mcq solution image
Therefore there are three common tangents.

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section