Question

The normal at the point $$\left( {bt_1^2,\,2b{t_1}} \right)$$   on a parabola meets the parabola again in the point $$\left( {bt_2^2,\,2b{t_2}} \right)$$   then-

A. $${t_2} = {t_1} + \frac{2}{{{t_1}}}$$
B. $${t_2} = - {t_1} - \frac{2}{{{t_1}}}$$  
C. $${t_2} = - {t_1} + \frac{2}{{{t_1}}}$$
D. $${t_2} = {t_1} - \frac{2}{{{t_1}}}$$
Answer :   $${t_2} = - {t_1} - \frac{2}{{{t_1}}}$$
Solution :
Equation of the normal to a parabola $${y^2} = 4bx$$   at point $$\left( {bt_1^2,\,2b{t_1}} \right)$$   is $$y = - {t_1}x + 2b{t_1} + bt_1^3$$
As given, it also passes through $$\left( {bt_2^2,\,2b{t_2}} \right)$$  then
$$\eqalign{ & 2b{t_2} = - {t_1}bt_2^2 + 2b{t_1} + bt_1^3 \cr & 2{t_2} - 2{t_1} = - {t_1}\left( {t_2^2 - t_1^2} \right) \cr & \Rightarrow 2{t_2} - 2{t_1} = - {t_1}\left( {{t_2} + {t_1}} \right)\left( {{t_2} - {t_1}} \right) \cr & \Rightarrow 2 = - {t_1}\left( {{t_2} + {t_1}} \right) \cr & \Rightarrow {t_2} + {t_1} = - \frac{2}{{{t_1}}} \cr & \Rightarrow {t_2} = - {t_1} - \frac{2}{{{t_1}}} \cr} $$

Releted MCQ Question on
Geometry >> Parabola

Releted Question 1

Consider a circle with its centre lying on the focus of the parabola $${y^2} = 2px$$   such that it touches the directrix of the parabola. Then a point of intersection of the circle and parabola is-

A. $$\left( {\frac{p}{2},\,p} \right){\text{ or }}\left( {\frac{p}{2},\, - p} \right)$$
B. $$\left( {\frac{p}{2},\, - \frac{p}{2}} \right)$$
C. $$\left( { - \frac{p}{2},\,p} \right)$$
D. $$\left( { - \frac{p}{2},\, - \frac{p}{2}} \right)$$
Releted Question 2

The curve described parametrically by $$x = {t^2} + t + 1,\,\,y = {t^2} - t + 1$$      represents-

A. a pair of straight lines
B. an ellipse
C. a parabola
D. a hyperbola
Releted Question 3

If $$x+y=k$$   is normal to $${y^2} = 12x,$$   then $$k$$ is-

A. $$3$$
B. $$9$$
C. $$ - 9$$
D. $$ - 3$$
Releted Question 4

If the line $$x-1=0$$   is the directrix of the parabola $${y^2} - kx + 8 = 0,$$    then one of the values of $$k$$ is-

A. $$\frac{1}{8}$$
B. $$8$$
C. $$4$$
D. $$\frac{1}{4}$$

Practice More Releted MCQ Question on
Parabola


Practice More MCQ Question on Maths Section