Question

The minimum area of triangle formed by the tangent to the $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$$    & coordinate axes is-

A. $$ab\,\,{\text{sq}}{\text{. units}}$$  
B. $$\frac{{{a^2} + {b^2}}}{2}\,\,{\text{sq}}{\text{. units}}$$
C. $$\frac{{{{\left( {a + b} \right)}^2}}}{2}\,\,{\text{sq}}{\text{. units}}$$
D. $$\frac{{{a^2} + ab + {b^2}}}{3}\,\,{\text{sq}}{\text{. units}}$$
Answer :   $$ab\,\,{\text{sq}}{\text{. units}}$$
Solution :
Any tangent to the ellipse $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$$    at $$P\left( {a\,\cos \,\theta ,\,b\,\sin \,\theta } \right)$$    is $$\frac{{x\,\cos \,\theta }}{a} + \frac{{y\,\sin \,\theta }}{b} = 1$$
Ellipse mcq solution image
It meets co-ordinate axes at $$A\left( {a\,\sec \,\theta ,\,0} \right)$$   and $$B\left( {0,\,b\,{\text{cosec}}\,\theta } \right)$$
$$\therefore $$ Area of $$\Delta OAB = \frac{1}{2} \times a\,\sec \,\theta \times b\,{\text{cosec}}\,\theta $$
$$ \Rightarrow \Delta = \frac{{ab}}{{\sin \,2\theta }}$$
For $$\Delta $$ to be min, $${\sin \,2\theta }$$  should be max. and we know max. value of $$\sin \,2\theta = 1$$
$$\therefore {\Delta _{\max }} = ab\,\,{\text{sq}}{\text{. units}}$$

Releted MCQ Question on
Geometry >> Ellipse

Releted Question 1

Let $$E$$ be the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$$   and $$C$$ be the circle $${x^2} + {y^2} = 9.$$   Let $$P$$ and $$Q$$ be the points $$\left( {1,\,2} \right)$$  and $$\left( {2,\,1} \right)$$  respectively. Then-

A. $$Q$$ lies inside $$C$$ but outside $$E$$
B. $$Q$$ lies outside both $$C$$ and $$E$$
C. $$P$$ lies inside both $$C$$ and $$E$$
D. $$P$$ lies inside $$C$$ but outside $$E$$
Releted Question 2

The radius of the circle passing through the foci of the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1,$$   and having its centre at $$\left( {0,\,3} \right)$$  is-

A. $$4$$
B. $$3$$
C. $$\sqrt {\frac{1}{2}} $$
D. $$\frac{7}{2}$$
Releted Question 3

The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1,$$    is-

A. $$\frac{{27}}{4}\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
B. $$9\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
C. $$\frac{{27}}{2}\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
D. $$27\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
Releted Question 4

If tangents are drawn to the ellipse $${x^2} + 2{y^2} = 2,$$   then the locus of the mid-point of the intercept made by the tangents between the coordinate axes is-

A. $$\frac{1}{{2{x^2}}} + \frac{1}{{4{y^2}}} = 1$$
B. $$\frac{1}{{4{x^2}}} + \frac{1}{{2{y^2}}} = 1$$
C. $$\frac{{{x^2}}}{2} + \frac{{{y^2}}}{4} = 1$$
D. $$\frac{{{x^2}}}{4} + \frac{{{y^2}}}{2} = 1$$

Practice More Releted MCQ Question on
Ellipse


Practice More MCQ Question on Maths Section