Question
      
        The mean of the series $${x_1},\,{x_2},......,\,{x_n}$$    is $$\overline X $$. If $${x_2}$$ is replaced by $$\lambda $$, then what is the new mean ?      
       A.
        $$\overline X  - {x_2} + \lambda $$              
       B.
        $$\frac{{\overline X  - {x_2} - \lambda }}{n}$$              
       C.
        $$\frac{{\overline X  - {x_2} + \lambda }}{n}$$              
       D.
        $$\frac{{n\overline X  - {x_2} + \lambda }}{n}$$                 
              
            
                Answer :  
        $$\frac{{n\overline X  - {x_2} + \lambda }}{n}$$      
             Solution :
        $$\eqalign{
  & {\text{Mean of series}}\left( {{x_1},\,{x_2},\,{x_3},......,\,{x_n}} \right)  \cr 
  & \overline x  = \frac{{{x_1} + {x_2} + {x_3}, +......,\,{x_n}}}{n}  \cr 
  &  \Rightarrow {x_1} + {x_2} + {x_3} + ...... + \,{x_n} = n\overline x   \cr 
  & {\text{Now we will replace }}{x_2}{\text{ by }}\lambda   \cr 
  & {\text{So number of elements in series will not change}}{\text{.}}  \cr 
  & {\text{New series will include }}\lambda {\text{ and exclude }}{x_2}  \cr 
  & {\text{Hence new series sum :}}  \cr 
  & \left( {{x_1} + {x_2} + ...... \,{x_n}} \right) - {x_2} + \lambda  = n\overline x  + \lambda  - {x_2}  \cr 
  & {\text{Now new mean}}  \cr 
  &  = \frac{{n\overline x  + \lambda  - {x_2}}}{n} = \frac{{n\overline x  - {x_2} + \lambda }}{n} \cr} $$