Question

The maximum value of $$f\left( x \right) = 3{\cos ^2}x + 4{\sin ^2}x + \cos \frac{x}{2} + \sin \frac{x}{2}$$        is :

A. 4
B. $$3 + \sqrt 2 $$
C. $$4 + \sqrt 2 $$  
D. none of these
Answer :   $$4 + \sqrt 2 $$
Solution :
$$\eqalign{ & f\left( x \right) = 4 - {\cos ^2}x + \cos \frac{x}{2} + \sin \frac{x}{2} \cr & \therefore f'\left( x \right) = \sin \,2x - \frac{1}{2}\left( {\sin \frac{x}{2} - \cos \frac{x}{2}} \right) \cr & = 2\sin \,x.\left( {{{\cos }^2}\frac{x}{2} - {{\sin }^2}\frac{x}{2}} \right) + \frac{1}{2}\left( {\cos \frac{x}{2} - \sin \frac{x}{2}} \right) \cr & = \left( {\cos \frac{x}{2} - \sin \frac{x}{2}} \right)\left\{ {2\sin \,x\left( {\cos \frac{x}{2} + \sin \frac{x}{2}} \right) + \frac{1}{2}} \right\} \cr & = \left( {\cos \frac{x}{2} - \sin \frac{x}{2}} \right)\left\{ {2\sqrt 2 \sin \,x.\sin \left( {\frac{x}{2} + \frac{\pi }{4}} \right) + \frac{1}{2}} \right\} \cr & \therefore \,\,f'\left( x \right) = 0\,\,\,\, \Rightarrow \cos \frac{x}{2} - \sin \frac{x}{2} = 0 \cr & \Rightarrow x = \frac{\pi }{2} \cr & f''\left( x \right) = 2\cos \,2x - \frac{1}{2}.\frac{1}{2}\left( {\cos \frac{x}{2} + \sin \frac{x}{2}} \right) \cr & \therefore f''\left( {\frac{\pi }{2}} \right) = - 2 - \frac{1}{4}\left( {\frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 2 }}} \right) < 0 \cr & \therefore \max \,f\left( x \right) = f\left( {\frac{\pi }{2}} \right) = 4 - 0 + \frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 2 }} = 4 + \sqrt 2 \cr} $$

Releted MCQ Question on
Calculus >> Application of Derivatives

Releted Question 1

If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A. at least one root in $$\left[ {0, 1} \right]$$
B. one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C. imaginary roots
D. none of these
Releted Question 2

$$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A. the area of $$\Delta ABC$$  is maximum when it is isosceles
B. the area of $$\Delta ABC$$  is minimum when it is isosceles
C. the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D. none of these
Releted Question 3

The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A. it makes a constant angle with the $$x - $$axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these
Releted Question 4

If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A. $$a = 2,b = - 1$$
B. $$a = 2,b = - \frac{1}{2}$$
C. $$a = - 2,b = \frac{1}{2}$$
D. none of these

Practice More Releted MCQ Question on
Application of Derivatives


Practice More MCQ Question on Maths Section